On a Fast Convergence of the Rational-Trigonometric-Polynomial Interpolation
نویسنده
چکیده
We consider the convergence acceleration of the Krylov-Lanczos interpolation by rational correction functions and investigate convergence of the resultant parametric rational-trigonometric-polynomial interpolation. Exact constants of asymptotic errors are obtained in the regions away from discontinuities, and fast convergence of the rational-trigonometric-polynomial interpolation compared to the Krylov-Lanczos interpolation is observed. Results of numerical experiments confirm theoretical estimates and show how the parameters of the interpolations can be determined in practice.
منابع مشابه
On a convergence of the Fourier-Pade interpolation
We investigate convergence of the rational-trigonometric-polynomial interpolation that performs convergence acceleration of the classical trigonometric interpolation by sequential application of polynomial and rational correction functions. Unknown parameters of the rational corrections are determined along the ideas of the Fourier-Pade approximations. The resultant interpolation we call as Fou...
متن کاملOn a pointwise convergence of trigonometric interpolations with shifted nodes
We consider trigonometric interpolations with shifted equidistant nodes and investigate their accuracies depending on the shift parameter. Two different types of interpolations are in the focus of our attention: the Krylov-Lanczos and the rational-trigonometric-polynomial interpolations. In both cases, we find optimal shifts that provide with the best accuracy in different frameworks.
متن کاملSolving Theodorsen's Integral Equation for Conformal Maps with the Fast Fourier Transform and Various Nonlinear Iterative Methods
We investigate several iterative methods for the numerical solution of Theodorsen's integral equation, the discretization of which is either based on trigonometric polynomials or function families with known attenuation factors. All our methods require simultaneous evaluations of a conjugate periodic function at each step and allow us to apply the fast Fourier transform for this. In particular,...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملTENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM
By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Numerical Analysis
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013